Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

25y^{2}+70y+49
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=70 ab=25\times 49=1225
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25y^{2}+ay+by+49. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,1225 5,245 7,175 25,49 35,35
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 1225.
1+1225=1226 5+245=250 7+175=182 25+49=74 35+35=70
Tātaihia te tapeke mō ia takirua.
a=35 b=35
Ko te otinga te takirua ka hoatu i te tapeke 70.
\left(25y^{2}+35y\right)+\left(35y+49\right)
Tuhia anō te 25y^{2}+70y+49 hei \left(25y^{2}+35y\right)+\left(35y+49\right).
5y\left(5y+7\right)+7\left(5y+7\right)
Tauwehea te 5y i te tuatahi me te 7 i te rōpū tuarua.
\left(5y+7\right)\left(5y+7\right)
Whakatauwehea atu te kīanga pātahi 5y+7 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(5y+7\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(25y^{2}+70y+49)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(25,70,49)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{25y^{2}}=5y
Kimihia te pūtakerua o te kīanga tau ārahi, 25y^{2}.
\sqrt{49}=7
Kimihia te pūtakerua o te kīanga tau autō, 49.
\left(5y+7\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
25y^{2}+70y+49=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-70±\sqrt{70^{2}-4\times 25\times 49}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-70±\sqrt{4900-4\times 25\times 49}}{2\times 25}
Pūrua 70.
y=\frac{-70±\sqrt{4900-100\times 49}}{2\times 25}
Whakareatia -4 ki te 25.
y=\frac{-70±\sqrt{4900-4900}}{2\times 25}
Whakareatia -100 ki te 49.
y=\frac{-70±\sqrt{0}}{2\times 25}
Tāpiri 4900 ki te -4900.
y=\frac{-70±0}{2\times 25}
Tuhia te pūtakerua o te 0.
y=\frac{-70±0}{50}
Whakareatia 2 ki te 25.
25y^{2}+70y+49=25\left(y-\left(-\frac{7}{5}\right)\right)\left(y-\left(-\frac{7}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{7}{5} mō te x_{1} me te -\frac{7}{5} mō te x_{2}.
25y^{2}+70y+49=25\left(y+\frac{7}{5}\right)\left(y+\frac{7}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
25y^{2}+70y+49=25\times \frac{5y+7}{5}\left(y+\frac{7}{5}\right)
Tāpiri \frac{7}{5} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25y^{2}+70y+49=25\times \frac{5y+7}{5}\times \frac{5y+7}{5}
Tāpiri \frac{7}{5} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25y^{2}+70y+49=25\times \frac{\left(5y+7\right)\left(5y+7\right)}{5\times 5}
Whakareatia \frac{5y+7}{5} ki te \frac{5y+7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25y^{2}+70y+49=25\times \frac{\left(5y+7\right)\left(5y+7\right)}{25}
Whakareatia 5 ki te 5.
25y^{2}+70y+49=\left(5y+7\right)\left(5y+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.