Aromātai
\frac{101074}{5911}\approx 17.099306378
Tauwehe
\frac{2 \cdot 97 \cdot 521}{23 \cdot 257} = 17\frac{587}{5911} = 17.099306377939435
Tohaina
Kua tāruatia ki te papatopenga
\frac{1050}{115}+\frac{16\times 256}{514}
Whakareatia te 70 ki te 15, ka 1050.
\frac{210}{23}+\frac{16\times 256}{514}
Whakahekea te hautanga \frac{1050}{115} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{210}{23}+\frac{4096}{514}
Whakareatia te 16 ki te 256, ka 4096.
\frac{210}{23}+\frac{2048}{257}
Whakahekea te hautanga \frac{4096}{514} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{53970}{5911}+\frac{47104}{5911}
Ko te maha noa iti rawa atu o 23 me 257 ko 5911. Me tahuri \frac{210}{23} me \frac{2048}{257} ki te hautau me te tautūnga 5911.
\frac{53970+47104}{5911}
Tā te mea he rite te tauraro o \frac{53970}{5911} me \frac{47104}{5911}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{101074}{5911}
Tāpirihia te 53970 ki te 47104, ka 101074.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}