7.8 \% \text { of } 12.5 + 2.5 \% \text { of } 161 = ?
Aromātai
5
Tauwehe
5
Tohaina
Kua tāruatia ki te papatopenga
\frac{78}{1000}\times 12.5+\frac{2.5}{100}\times 161
Whakarohaina te \frac{7.8}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{39}{500}\times 12.5+\frac{2.5}{100}\times 161
Whakahekea te hautanga \frac{78}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{39}{500}\times \frac{25}{2}+\frac{2.5}{100}\times 161
Me tahuri ki tau ā-ira 12.5 ki te hautau \frac{125}{10}. Whakahekea te hautanga \frac{125}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{39\times 25}{500\times 2}+\frac{2.5}{100}\times 161
Me whakarea te \frac{39}{500} ki te \frac{25}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{975}{1000}+\frac{2.5}{100}\times 161
Mahia ngā whakarea i roto i te hautanga \frac{39\times 25}{500\times 2}.
\frac{39}{40}+\frac{2.5}{100}\times 161
Whakahekea te hautanga \frac{975}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{39}{40}+\frac{25}{1000}\times 161
Whakarohaina te \frac{2.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{39}{40}+\frac{1}{40}\times 161
Whakahekea te hautanga \frac{25}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{39}{40}+\frac{161}{40}
Whakareatia te \frac{1}{40} ki te 161, ka \frac{161}{40}.
\frac{39+161}{40}
Tā te mea he rite te tauraro o \frac{39}{40} me \frac{161}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{200}{40}
Tāpirihia te 39 ki te 161, ka 200.
5
Whakawehea te 200 ki te 40, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}