Aromātai
1.8125
Tauwehe
\frac{29}{2 ^ {4}} = 1\frac{13}{16} = 1.8125
Tohaina
Kua tāruatia ki te papatopenga
7.5\left(\frac{3}{8}+\frac{7}{10}\right)-\left(\frac{5}{2}\right)^{2}
Me tahuri ki tau ā-ira 0.7 ki te hautau \frac{7}{10}.
7.5\left(\frac{15}{40}+\frac{28}{40}\right)-\left(\frac{5}{2}\right)^{2}
Ko te maha noa iti rawa atu o 8 me 10 ko 40. Me tahuri \frac{3}{8} me \frac{7}{10} ki te hautau me te tautūnga 40.
7.5\times \frac{15+28}{40}-\left(\frac{5}{2}\right)^{2}
Tā te mea he rite te tauraro o \frac{15}{40} me \frac{28}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
7.5\times \frac{43}{40}-\left(\frac{5}{2}\right)^{2}
Tāpirihia te 15 ki te 28, ka 43.
\frac{15}{2}\times \frac{43}{40}-\left(\frac{5}{2}\right)^{2}
Me tahuri ki tau ā-ira 7.5 ki te hautau \frac{75}{10}. Whakahekea te hautanga \frac{75}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{15\times 43}{2\times 40}-\left(\frac{5}{2}\right)^{2}
Me whakarea te \frac{15}{2} ki te \frac{43}{40} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{645}{80}-\left(\frac{5}{2}\right)^{2}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 43}{2\times 40}.
\frac{129}{16}-\left(\frac{5}{2}\right)^{2}
Whakahekea te hautanga \frac{645}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{129}{16}-\frac{25}{4}
Tātaihia te \frac{5}{2} mā te pū o 2, kia riro ko \frac{25}{4}.
\frac{129}{16}-\frac{100}{16}
Ko te maha noa iti rawa atu o 16 me 4 ko 16. Me tahuri \frac{129}{16} me \frac{25}{4} ki te hautau me te tautūnga 16.
\frac{129-100}{16}
Tā te mea he rite te tauraro o \frac{129}{16} me \frac{100}{16}, me tango rāua mā te tango i ō raua taurunga.
\frac{29}{16}
Tangohia te 100 i te 129, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}