Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7.5}{5}=t^{2}
Whakawehea ngā taha e rua ki te 5.
\frac{75}{50}=t^{2}
Whakarohaina te \frac{7.5}{5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{3}{2}=t^{2}
Whakahekea te hautanga \frac{75}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
t^{2}=\frac{3}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t=\frac{\sqrt{6}}{2} t=-\frac{\sqrt{6}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{7.5}{5}=t^{2}
Whakawehea ngā taha e rua ki te 5.
\frac{75}{50}=t^{2}
Whakarohaina te \frac{7.5}{5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{3}{2}=t^{2}
Whakahekea te hautanga \frac{75}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
t^{2}=\frac{3}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t^{2}-\frac{3}{2}=0
Tangohia te \frac{3}{2} mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{3}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{3}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{3}{2}\right)}}{2}
Pūrua 0.
t=\frac{0±\sqrt{6}}{2}
Whakareatia -4 ki te -\frac{3}{2}.
t=\frac{\sqrt{6}}{2}
Nā, me whakaoti te whārite t=\frac{0±\sqrt{6}}{2} ina he tāpiri te ±.
t=-\frac{\sqrt{6}}{2}
Nā, me whakaoti te whārite t=\frac{0±\sqrt{6}}{2} ina he tango te ±.
t=\frac{\sqrt{6}}{2} t=-\frac{\sqrt{6}}{2}
Kua oti te whārite te whakatau.