Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7+x^{2}\times 3=32
Whakareatia te x ki te x, ka x^{2}.
x^{2}\times 3=32-7
Tangohia te 7 mai i ngā taha e rua.
x^{2}\times 3=25
Tangohia te 7 i te 32, ka 25.
x^{2}=\frac{25}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{5\sqrt{3}}{3} x=-\frac{5\sqrt{3}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
7+x^{2}\times 3=32
Whakareatia te x ki te x, ka x^{2}.
7+x^{2}\times 3-32=0
Tangohia te 32 mai i ngā taha e rua.
-25+x^{2}\times 3=0
Tangohia te 32 i te 7, ka -25.
3x^{2}-25=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-25\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-25\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-25\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{300}}{2\times 3}
Whakareatia -12 ki te -25.
x=\frac{0±10\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 300.
x=\frac{0±10\sqrt{3}}{6}
Whakareatia 2 ki te 3.
x=\frac{5\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{3}}{6} ina he tāpiri te ±.
x=-\frac{5\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±10\sqrt{3}}{6} ina he tango te ±.
x=\frac{5\sqrt{3}}{3} x=-\frac{5\sqrt{3}}{3}
Kua oti te whārite te whakatau.