Aromātai
\frac{433}{39}\approx 11.102564103
Tauwehe
\frac{433}{3 \cdot 13} = 11\frac{4}{39} = 11.102564102564102
Tohaina
Kua tāruatia ki te papatopenga
7+\frac{8\left(8+3\times 4\right)}{3+4\times 9}
Tāpirihia te 7 ki te 1, ka 8.
7+\frac{8\left(8+12\right)}{3+4\times 9}
Whakareatia te 3 ki te 4, ka 12.
7+\frac{8\times 20}{3+4\times 9}
Tāpirihia te 8 ki te 12, ka 20.
7+\frac{160}{3+4\times 9}
Whakareatia te 8 ki te 20, ka 160.
7+\frac{160}{3+36}
Whakareatia te 4 ki te 9, ka 36.
7+\frac{160}{39}
Tāpirihia te 3 ki te 36, ka 39.
\frac{273}{39}+\frac{160}{39}
Me tahuri te 7 ki te hautau \frac{273}{39}.
\frac{273+160}{39}
Tā te mea he rite te tauraro o \frac{273}{39} me \frac{160}{39}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{433}{39}
Tāpirihia te 273 ki te 160, ka 433.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}