Whakaoti mō z
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
z=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
7z^{2}+8z+3-3z^{2}=0
Tangohia te 3z^{2} mai i ngā taha e rua.
4z^{2}+8z+3=0
Pahekotia te 7z^{2} me -3z^{2}, ka 4z^{2}.
a+b=8 ab=4\times 3=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4z^{2}+az+bz+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(4z^{2}+2z\right)+\left(6z+3\right)
Tuhia anō te 4z^{2}+8z+3 hei \left(4z^{2}+2z\right)+\left(6z+3\right).
2z\left(2z+1\right)+3\left(2z+1\right)
Tauwehea te 2z i te tuatahi me te 3 i te rōpū tuarua.
\left(2z+1\right)\left(2z+3\right)
Whakatauwehea atu te kīanga pātahi 2z+1 mā te whakamahi i te āhuatanga tātai tohatoha.
z=-\frac{1}{2} z=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 2z+1=0 me te 2z+3=0.
7z^{2}+8z+3-3z^{2}=0
Tangohia te 3z^{2} mai i ngā taha e rua.
4z^{2}+8z+3=0
Pahekotia te 7z^{2} me -3z^{2}, ka 4z^{2}.
z=\frac{-8±\sqrt{8^{2}-4\times 4\times 3}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 8 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-8±\sqrt{64-4\times 4\times 3}}{2\times 4}
Pūrua 8.
z=\frac{-8±\sqrt{64-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
z=\frac{-8±\sqrt{64-48}}{2\times 4}
Whakareatia -16 ki te 3.
z=\frac{-8±\sqrt{16}}{2\times 4}
Tāpiri 64 ki te -48.
z=\frac{-8±4}{2\times 4}
Tuhia te pūtakerua o te 16.
z=\frac{-8±4}{8}
Whakareatia 2 ki te 4.
z=-\frac{4}{8}
Nā, me whakaoti te whārite z=\frac{-8±4}{8} ina he tāpiri te ±. Tāpiri -8 ki te 4.
z=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
z=-\frac{12}{8}
Nā, me whakaoti te whārite z=\frac{-8±4}{8} ina he tango te ±. Tango 4 mai i -8.
z=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
z=-\frac{1}{2} z=-\frac{3}{2}
Kua oti te whārite te whakatau.
7z^{2}+8z+3-3z^{2}=0
Tangohia te 3z^{2} mai i ngā taha e rua.
4z^{2}+8z+3=0
Pahekotia te 7z^{2} me -3z^{2}, ka 4z^{2}.
4z^{2}+8z=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4z^{2}+8z}{4}=-\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
z^{2}+\frac{8}{4}z=-\frac{3}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
z^{2}+2z=-\frac{3}{4}
Whakawehe 8 ki te 4.
z^{2}+2z+1^{2}=-\frac{3}{4}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+2z+1=-\frac{3}{4}+1
Pūrua 1.
z^{2}+2z+1=\frac{1}{4}
Tāpiri -\frac{3}{4} ki te 1.
\left(z+1\right)^{2}=\frac{1}{4}
Tauwehea z^{2}+2z+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+1\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+1=\frac{1}{2} z+1=-\frac{1}{2}
Whakarūnātia.
z=-\frac{1}{2} z=-\frac{3}{2}
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}