Whakaoti mō x (complex solution)
x=\frac{-\sqrt{31}i+1}{8}\approx 0.125-0.695970545i
x=\frac{1+\sqrt{31}i}{8}\approx 0.125+0.695970545i
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x-6-2x=4x-3-1+4x^{2}
Tangohia te 5 i te -1, ka -6.
5x-6=4x-3-1+4x^{2}
Pahekotia te 7x me -2x, ka 5x.
5x-6=4x-4+4x^{2}
Tangohia te 1 i te -3, ka -4.
5x-6-4x=-4+4x^{2}
Tangohia te 4x mai i ngā taha e rua.
x-6=-4+4x^{2}
Pahekotia te 5x me -4x, ka x.
x-6-\left(-4\right)=4x^{2}
Tangohia te -4 mai i ngā taha e rua.
x-6+4=4x^{2}
Ko te tauaro o -4 ko 4.
x-6+4-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
x-2-4x^{2}=0
Tāpirihia te -6 ki te 4, ka -2.
-4x^{2}+x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 1 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-4\right)\left(-2\right)}}{2\left(-4\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+16\left(-2\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-1±\sqrt{1-32}}{2\left(-4\right)}
Whakareatia 16 ki te -2.
x=\frac{-1±\sqrt{-31}}{2\left(-4\right)}
Tāpiri 1 ki te -32.
x=\frac{-1±\sqrt{31}i}{2\left(-4\right)}
Tuhia te pūtakerua o te -31.
x=\frac{-1±\sqrt{31}i}{-8}
Whakareatia 2 ki te -4.
x=\frac{-1+\sqrt{31}i}{-8}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{31}i}{-8} ina he tāpiri te ±. Tāpiri -1 ki te i\sqrt{31}.
x=\frac{-\sqrt{31}i+1}{8}
Whakawehe -1+i\sqrt{31} ki te -8.
x=\frac{-\sqrt{31}i-1}{-8}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{31}i}{-8} ina he tango te ±. Tango i\sqrt{31} mai i -1.
x=\frac{1+\sqrt{31}i}{8}
Whakawehe -1-i\sqrt{31} ki te -8.
x=\frac{-\sqrt{31}i+1}{8} x=\frac{1+\sqrt{31}i}{8}
Kua oti te whārite te whakatau.
7x-6-2x=4x-3-1+4x^{2}
Tangohia te 5 i te -1, ka -6.
5x-6=4x-3-1+4x^{2}
Pahekotia te 7x me -2x, ka 5x.
5x-6=4x-4+4x^{2}
Tangohia te 1 i te -3, ka -4.
5x-6-4x=-4+4x^{2}
Tangohia te 4x mai i ngā taha e rua.
x-6=-4+4x^{2}
Pahekotia te 5x me -4x, ka x.
x-6-4x^{2}=-4
Tangohia te 4x^{2} mai i ngā taha e rua.
x-4x^{2}=-4+6
Me tāpiri te 6 ki ngā taha e rua.
x-4x^{2}=2
Tāpirihia te -4 ki te 6, ka 2.
-4x^{2}+x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+x}{-4}=\frac{2}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{1}{-4}x=\frac{2}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{1}{4}x=\frac{2}{-4}
Whakawehe 1 ki te -4.
x^{2}-\frac{1}{4}x=-\frac{1}{2}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-\frac{1}{2}+\left(-\frac{1}{8}\right)^{2}
Whakawehea te -\frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{8}. Nā, tāpiria te pūrua o te -\frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{1}{2}+\frac{1}{64}
Pūruatia -\frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{31}{64}
Tāpiri -\frac{1}{2} ki te \frac{1}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{8}\right)^{2}=-\frac{31}{64}
Tauwehea x^{2}-\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{-\frac{31}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{8}=\frac{\sqrt{31}i}{8} x-\frac{1}{8}=-\frac{\sqrt{31}i}{8}
Whakarūnātia.
x=\frac{1+\sqrt{31}i}{8} x=\frac{-\sqrt{31}i+1}{8}
Me tāpiri \frac{1}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}