Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-9 ab=7\times 2=14
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-14 -2,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 14.
-1-14=-15 -2-7=-9
Tātaihia te tapeke mō ia takirua.
a=-7 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(7x^{2}-7x\right)+\left(-2x+2\right)
Tuhia anō te 7x^{2}-9x+2 hei \left(7x^{2}-7x\right)+\left(-2x+2\right).
7x\left(x-1\right)-2\left(x-1\right)
Tauwehea te 7x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-1\right)\left(7x-2\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
7x^{2}-9x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 7\times 2}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 7\times 2}}{2\times 7}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-28\times 2}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2\times 7}
Whakareatia -28 ki te 2.
x=\frac{-\left(-9\right)±\sqrt{25}}{2\times 7}
Tāpiri 81 ki te -56.
x=\frac{-\left(-9\right)±5}{2\times 7}
Tuhia te pūtakerua o te 25.
x=\frac{9±5}{2\times 7}
Ko te tauaro o -9 ko 9.
x=\frac{9±5}{14}
Whakareatia 2 ki te 7.
x=\frac{14}{14}
Nā, me whakaoti te whārite x=\frac{9±5}{14} ina he tāpiri te ±. Tāpiri 9 ki te 5.
x=1
Whakawehe 14 ki te 14.
x=\frac{4}{14}
Nā, me whakaoti te whārite x=\frac{9±5}{14} ina he tango te ±. Tango 5 mai i 9.
x=\frac{2}{7}
Whakahekea te hautanga \frac{4}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
7x^{2}-9x+2=7\left(x-1\right)\left(x-\frac{2}{7}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te \frac{2}{7} mō te x_{2}.
7x^{2}-9x+2=7\left(x-1\right)\times \frac{7x-2}{7}
Tango \frac{2}{7} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
7x^{2}-9x+2=\left(x-1\right)\left(7x-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 7 i roto i te 7 me te 7.