Whakaoti mō x
x=\frac{1}{7}\approx 0.142857143
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-36 ab=7\times 5=35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-35 -5,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 35.
-1-35=-36 -5-7=-12
Tātaihia te tapeke mō ia takirua.
a=-35 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -36.
\left(7x^{2}-35x\right)+\left(-x+5\right)
Tuhia anō te 7x^{2}-36x+5 hei \left(7x^{2}-35x\right)+\left(-x+5\right).
7x\left(x-5\right)-\left(x-5\right)
Tauwehea te 7x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-5\right)\left(7x-1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=\frac{1}{7}
Hei kimi otinga whārite, me whakaoti te x-5=0 me te 7x-1=0.
7x^{2}-36x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 7\times 5}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -36 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 7\times 5}}{2\times 7}
Pūrua -36.
x=\frac{-\left(-36\right)±\sqrt{1296-28\times 5}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-36\right)±\sqrt{1296-140}}{2\times 7}
Whakareatia -28 ki te 5.
x=\frac{-\left(-36\right)±\sqrt{1156}}{2\times 7}
Tāpiri 1296 ki te -140.
x=\frac{-\left(-36\right)±34}{2\times 7}
Tuhia te pūtakerua o te 1156.
x=\frac{36±34}{2\times 7}
Ko te tauaro o -36 ko 36.
x=\frac{36±34}{14}
Whakareatia 2 ki te 7.
x=\frac{70}{14}
Nā, me whakaoti te whārite x=\frac{36±34}{14} ina he tāpiri te ±. Tāpiri 36 ki te 34.
x=5
Whakawehe 70 ki te 14.
x=\frac{2}{14}
Nā, me whakaoti te whārite x=\frac{36±34}{14} ina he tango te ±. Tango 34 mai i 36.
x=\frac{1}{7}
Whakahekea te hautanga \frac{2}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=5 x=\frac{1}{7}
Kua oti te whārite te whakatau.
7x^{2}-36x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}-36x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
7x^{2}-36x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{7x^{2}-36x}{7}=-\frac{5}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}-\frac{36}{7}x=-\frac{5}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}-\frac{36}{7}x+\left(-\frac{18}{7}\right)^{2}=-\frac{5}{7}+\left(-\frac{18}{7}\right)^{2}
Whakawehea te -\frac{36}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{18}{7}. Nā, tāpiria te pūrua o te -\frac{18}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{36}{7}x+\frac{324}{49}=-\frac{5}{7}+\frac{324}{49}
Pūruatia -\frac{18}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{289}{49}
Tāpiri -\frac{5}{7} ki te \frac{324}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{18}{7}\right)^{2}=\frac{289}{49}
Tauwehea x^{2}-\frac{36}{7}x+\frac{324}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{18}{7}\right)^{2}}=\sqrt{\frac{289}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{18}{7}=\frac{17}{7} x-\frac{18}{7}=-\frac{17}{7}
Whakarūnātia.
x=5 x=\frac{1}{7}
Me tāpiri \frac{18}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}