Tauwehe
\left(x-5\right)\left(7x+3\right)
Aromātai
\left(x-5\right)\left(7x+3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-32 ab=7\left(-15\right)=-105
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-105 3,-35 5,-21 7,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Tātaihia te tapeke mō ia takirua.
a=-35 b=3
Ko te otinga te takirua ka hoatu i te tapeke -32.
\left(7x^{2}-35x\right)+\left(3x-15\right)
Tuhia anō te 7x^{2}-32x-15 hei \left(7x^{2}-35x\right)+\left(3x-15\right).
7x\left(x-5\right)+3\left(x-5\right)
Tauwehea te 7x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-5\right)\left(7x+3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
7x^{2}-32x-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 7\left(-15\right)}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 7\left(-15\right)}}{2\times 7}
Pūrua -32.
x=\frac{-\left(-32\right)±\sqrt{1024-28\left(-15\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-32\right)±\sqrt{1024+420}}{2\times 7}
Whakareatia -28 ki te -15.
x=\frac{-\left(-32\right)±\sqrt{1444}}{2\times 7}
Tāpiri 1024 ki te 420.
x=\frac{-\left(-32\right)±38}{2\times 7}
Tuhia te pūtakerua o te 1444.
x=\frac{32±38}{2\times 7}
Ko te tauaro o -32 ko 32.
x=\frac{32±38}{14}
Whakareatia 2 ki te 7.
x=\frac{70}{14}
Nā, me whakaoti te whārite x=\frac{32±38}{14} ina he tāpiri te ±. Tāpiri 32 ki te 38.
x=5
Whakawehe 70 ki te 14.
x=-\frac{6}{14}
Nā, me whakaoti te whārite x=\frac{32±38}{14} ina he tango te ±. Tango 38 mai i 32.
x=-\frac{3}{7}
Whakahekea te hautanga \frac{-6}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
7x^{2}-32x-15=7\left(x-5\right)\left(x-\left(-\frac{3}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -\frac{3}{7} mō te x_{2}.
7x^{2}-32x-15=7\left(x-5\right)\left(x+\frac{3}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
7x^{2}-32x-15=7\left(x-5\right)\times \frac{7x+3}{7}
Tāpiri \frac{3}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
7x^{2}-32x-15=\left(x-5\right)\left(7x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 7 i roto i te 7 me te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}