Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-18 ab=7\left(-9\right)=-63
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-63 3,-21 7,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -63.
1-63=-62 3-21=-18 7-9=-2
Tātaihia te tapeke mō ia takirua.
a=-21 b=3
Ko te otinga te takirua ka hoatu i te tapeke -18.
\left(7x^{2}-21x\right)+\left(3x-9\right)
Tuhia anō te 7x^{2}-18x-9 hei \left(7x^{2}-21x\right)+\left(3x-9\right).
7x\left(x-3\right)+3\left(x-3\right)
Tauwehea te 7x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-3\right)\left(7x+3\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{3}{7}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 7x+3=0.
7x^{2}-18x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 7\left(-9\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -18 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 7\left(-9\right)}}{2\times 7}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-28\left(-9\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-18\right)±\sqrt{324+252}}{2\times 7}
Whakareatia -28 ki te -9.
x=\frac{-\left(-18\right)±\sqrt{576}}{2\times 7}
Tāpiri 324 ki te 252.
x=\frac{-\left(-18\right)±24}{2\times 7}
Tuhia te pūtakerua o te 576.
x=\frac{18±24}{2\times 7}
Ko te tauaro o -18 ko 18.
x=\frac{18±24}{14}
Whakareatia 2 ki te 7.
x=\frac{42}{14}
Nā, me whakaoti te whārite x=\frac{18±24}{14} ina he tāpiri te ±. Tāpiri 18 ki te 24.
x=3
Whakawehe 42 ki te 14.
x=-\frac{6}{14}
Nā, me whakaoti te whārite x=\frac{18±24}{14} ina he tango te ±. Tango 24 mai i 18.
x=-\frac{3}{7}
Whakahekea te hautanga \frac{-6}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{3}{7}
Kua oti te whārite te whakatau.
7x^{2}-18x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}-18x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
7x^{2}-18x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
7x^{2}-18x=9
Tango -9 mai i 0.
\frac{7x^{2}-18x}{7}=\frac{9}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}-\frac{18}{7}x=\frac{9}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}-\frac{18}{7}x+\left(-\frac{9}{7}\right)^{2}=\frac{9}{7}+\left(-\frac{9}{7}\right)^{2}
Whakawehea te -\frac{18}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{7}. Nā, tāpiria te pūrua o te -\frac{9}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{18}{7}x+\frac{81}{49}=\frac{9}{7}+\frac{81}{49}
Pūruatia -\frac{9}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{18}{7}x+\frac{81}{49}=\frac{144}{49}
Tāpiri \frac{9}{7} ki te \frac{81}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{7}\right)^{2}=\frac{144}{49}
Tauwehea x^{2}-\frac{18}{7}x+\frac{81}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{7}\right)^{2}}=\sqrt{\frac{144}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{7}=\frac{12}{7} x-\frac{9}{7}=-\frac{12}{7}
Whakarūnātia.
x=3 x=-\frac{3}{7}
Me tāpiri \frac{9}{7} ki ngā taha e rua o te whārite.