Whakaoti mō x
x=\frac{3\sqrt{21}}{14}+1\approx 1.981980506
x=-\frac{3\sqrt{21}}{14}+1\approx 0.018019494
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x^{2}-14x+\frac{1}{4}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7\times \frac{1}{4}}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -14 mō b, me \frac{1}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7\times \frac{1}{4}}}{2\times 7}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-28\times \frac{1}{4}}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-14\right)±\sqrt{196-7}}{2\times 7}
Whakareatia -28 ki te \frac{1}{4}.
x=\frac{-\left(-14\right)±\sqrt{189}}{2\times 7}
Tāpiri 196 ki te -7.
x=\frac{-\left(-14\right)±3\sqrt{21}}{2\times 7}
Tuhia te pūtakerua o te 189.
x=\frac{14±3\sqrt{21}}{2\times 7}
Ko te tauaro o -14 ko 14.
x=\frac{14±3\sqrt{21}}{14}
Whakareatia 2 ki te 7.
x=\frac{3\sqrt{21}+14}{14}
Nā, me whakaoti te whārite x=\frac{14±3\sqrt{21}}{14} ina he tāpiri te ±. Tāpiri 14 ki te 3\sqrt{21}.
x=\frac{3\sqrt{21}}{14}+1
Whakawehe 14+3\sqrt{21} ki te 14.
x=\frac{14-3\sqrt{21}}{14}
Nā, me whakaoti te whārite x=\frac{14±3\sqrt{21}}{14} ina he tango te ±. Tango 3\sqrt{21} mai i 14.
x=-\frac{3\sqrt{21}}{14}+1
Whakawehe 14-3\sqrt{21} ki te 14.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
Kua oti te whārite te whakatau.
7x^{2}-14x+\frac{1}{4}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}-14x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
7x^{2}-14x=-\frac{1}{4}
Mā te tango i te \frac{1}{4} i a ia ake anō ka toe ko te 0.
\frac{7x^{2}-14x}{7}=-\frac{\frac{1}{4}}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\left(-\frac{14}{7}\right)x=-\frac{\frac{1}{4}}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}-2x=-\frac{\frac{1}{4}}{7}
Whakawehe -14 ki te 7.
x^{2}-2x=-\frac{1}{28}
Whakawehe -\frac{1}{4} ki te 7.
x^{2}-2x+1=-\frac{1}{28}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{27}{28}
Tāpiri -\frac{1}{28} ki te 1.
\left(x-1\right)^{2}=\frac{27}{28}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{27}{28}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{3\sqrt{21}}{14} x-1=-\frac{3\sqrt{21}}{14}
Whakarūnātia.
x=\frac{3\sqrt{21}}{14}+1 x=-\frac{3\sqrt{21}}{14}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}