Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=-\frac{48}{7}
Whakawehea ngā taha e rua ki te 7.
x=\frac{4\sqrt{21}i}{7} x=-\frac{4\sqrt{21}i}{7}
Kua oti te whārite te whakatau.
x^{2}=-\frac{48}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{48}{7}=0
Me tāpiri te \frac{48}{7} ki ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{48}{7}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me \frac{48}{7} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{48}{7}}}{2}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{192}{7}}}{2}
Whakareatia -4 ki te \frac{48}{7}.
x=\frac{0±\frac{8\sqrt{21}i}{7}}{2}
Tuhia te pūtakerua o te -\frac{192}{7}.
x=\frac{4\sqrt{21}i}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{21}i}{7}}{2} ina he tāpiri te ±.
x=-\frac{4\sqrt{21}i}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{8\sqrt{21}i}{7}}{2} ina he tango te ±.
x=\frac{4\sqrt{21}i}{7} x=-\frac{4\sqrt{21}i}{7}
Kua oti te whārite te whakatau.