Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}+6-13=0
Tangohia te 13 mai i ngā taha e rua.
7x^{2}-7=0
Tangohia te 13 i te 6, ka -7.
x^{2}-1=0
Whakawehea ngā taha e rua ki te 7.
\left(x-1\right)\left(x+1\right)=0
Whakaarohia te x^{2}-1. Tuhia anō te x^{2}-1 hei x^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+1=0.
7x^{2}=13-6
Tangohia te 6 mai i ngā taha e rua.
7x^{2}=7
Tangohia te 6 i te 13, ka 7.
x^{2}=\frac{7}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}=1
Whakawehea te 7 ki te 7, kia riro ko 1.
x=1 x=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
7x^{2}+6-13=0
Tangohia te 13 mai i ngā taha e rua.
7x^{2}-7=0
Tangohia te 13 i te 6, ka -7.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-7\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-7\right)}}{2\times 7}
Pūrua 0.
x=\frac{0±\sqrt{-28\left(-7\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{0±\sqrt{196}}{2\times 7}
Whakareatia -28 ki te -7.
x=\frac{0±14}{2\times 7}
Tuhia te pūtakerua o te 196.
x=\frac{0±14}{14}
Whakareatia 2 ki te 7.
x=1
Nā, me whakaoti te whārite x=\frac{0±14}{14} ina he tāpiri te ±. Whakawehe 14 ki te 14.
x=-1
Nā, me whakaoti te whārite x=\frac{0±14}{14} ina he tango te ±. Whakawehe -14 ki te 14.
x=1 x=-1
Kua oti te whārite te whakatau.