Whakaoti mō x
x = -\frac{26}{7} = -3\frac{5}{7} \approx -3.714285714
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=7\left(-78\right)=-546
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-78. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,546 -2,273 -3,182 -6,91 -7,78 -13,42 -14,39 -21,26
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -546.
-1+546=545 -2+273=271 -3+182=179 -6+91=85 -7+78=71 -13+42=29 -14+39=25 -21+26=5
Tātaihia te tapeke mō ia takirua.
a=-21 b=26
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(7x^{2}-21x\right)+\left(26x-78\right)
Tuhia anō te 7x^{2}+5x-78 hei \left(7x^{2}-21x\right)+\left(26x-78\right).
7x\left(x-3\right)+26\left(x-3\right)
Tauwehea te 7x i te tuatahi me te 26 i te rōpū tuarua.
\left(x-3\right)\left(7x+26\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-\frac{26}{7}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 7x+26=0.
7x^{2}+5x-78=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 7\left(-78\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 5 mō b, me -78 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7\left(-78\right)}}{2\times 7}
Pūrua 5.
x=\frac{-5±\sqrt{25-28\left(-78\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-5±\sqrt{25+2184}}{2\times 7}
Whakareatia -28 ki te -78.
x=\frac{-5±\sqrt{2209}}{2\times 7}
Tāpiri 25 ki te 2184.
x=\frac{-5±47}{2\times 7}
Tuhia te pūtakerua o te 2209.
x=\frac{-5±47}{14}
Whakareatia 2 ki te 7.
x=\frac{42}{14}
Nā, me whakaoti te whārite x=\frac{-5±47}{14} ina he tāpiri te ±. Tāpiri -5 ki te 47.
x=3
Whakawehe 42 ki te 14.
x=-\frac{52}{14}
Nā, me whakaoti te whārite x=\frac{-5±47}{14} ina he tango te ±. Tango 47 mai i -5.
x=-\frac{26}{7}
Whakahekea te hautanga \frac{-52}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=-\frac{26}{7}
Kua oti te whārite te whakatau.
7x^{2}+5x-78=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}+5x-78-\left(-78\right)=-\left(-78\right)
Me tāpiri 78 ki ngā taha e rua o te whārite.
7x^{2}+5x=-\left(-78\right)
Mā te tango i te -78 i a ia ake anō ka toe ko te 0.
7x^{2}+5x=78
Tango -78 mai i 0.
\frac{7x^{2}+5x}{7}=\frac{78}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{5}{7}x=\frac{78}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=\frac{78}{7}+\left(\frac{5}{14}\right)^{2}
Whakawehea te \frac{5}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{14}. Nā, tāpiria te pūrua o te \frac{5}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{7}x+\frac{25}{196}=\frac{78}{7}+\frac{25}{196}
Pūruatia \frac{5}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{7}x+\frac{25}{196}=\frac{2209}{196}
Tāpiri \frac{78}{7} ki te \frac{25}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{14}\right)^{2}=\frac{2209}{196}
Tauwehea x^{2}+\frac{5}{7}x+\frac{25}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{\frac{2209}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{14}=\frac{47}{14} x+\frac{5}{14}=-\frac{47}{14}
Whakarūnātia.
x=3 x=-\frac{26}{7}
Me tango \frac{5}{14} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}