Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}+5x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 7\times 5}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 5 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7\times 5}}{2\times 7}
Pūrua 5.
x=\frac{-5±\sqrt{25-28\times 5}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-5±\sqrt{25-140}}{2\times 7}
Whakareatia -28 ki te 5.
x=\frac{-5±\sqrt{-115}}{2\times 7}
Tāpiri 25 ki te -140.
x=\frac{-5±\sqrt{115}i}{2\times 7}
Tuhia te pūtakerua o te -115.
x=\frac{-5±\sqrt{115}i}{14}
Whakareatia 2 ki te 7.
x=\frac{-5+\sqrt{115}i}{14}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{115}i}{14} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{115}.
x=\frac{-\sqrt{115}i-5}{14}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{115}i}{14} ina he tango te ±. Tango i\sqrt{115} mai i -5.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
Kua oti te whārite te whakatau.
7x^{2}+5x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}+5x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
7x^{2}+5x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{7x^{2}+5x}{7}=-\frac{5}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{5}{7}x=-\frac{5}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=-\frac{5}{7}+\left(\frac{5}{14}\right)^{2}
Whakawehea te \frac{5}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{14}. Nā, tāpiria te pūrua o te \frac{5}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{5}{7}+\frac{25}{196}
Pūruatia \frac{5}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{115}{196}
Tāpiri -\frac{5}{7} ki te \frac{25}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{14}\right)^{2}=-\frac{115}{196}
Tauwehea x^{2}+\frac{5}{7}x+\frac{25}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{-\frac{115}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{14}=\frac{\sqrt{115}i}{14} x+\frac{5}{14}=-\frac{\sqrt{115}i}{14}
Whakarūnātia.
x=\frac{-5+\sqrt{115}i}{14} x=\frac{-\sqrt{115}i-5}{14}
Me tango \frac{5}{14} mai i ngā taha e rua o te whārite.