Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{5}{7}
Whakawehea ngā taha e rua ki te 7.
x=\frac{\sqrt{35}i}{7} x=-\frac{\sqrt{35}i}{7}
Kua oti te whārite te whakatau.
7x^{2}+5=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 7\times 5}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 0 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\times 5}}{2\times 7}
Pūrua 0.
x=\frac{0±\sqrt{-28\times 5}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{0±\sqrt{-140}}{2\times 7}
Whakareatia -28 ki te 5.
x=\frac{0±2\sqrt{35}i}{2\times 7}
Tuhia te pūtakerua o te -140.
x=\frac{0±2\sqrt{35}i}{14}
Whakareatia 2 ki te 7.
x=\frac{\sqrt{35}i}{7}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{35}i}{14} ina he tāpiri te ±.
x=-\frac{\sqrt{35}i}{7}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{35}i}{14} ina he tango te ±.
x=\frac{\sqrt{35}i}{7} x=-\frac{\sqrt{35}i}{7}
Kua oti te whārite te whakatau.