Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=36 ab=7\times 5=35
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,35 5,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 35.
1+35=36 5+7=12
Tātaihia te tapeke mō ia takirua.
a=1 b=35
Ko te otinga te takirua ka hoatu i te tapeke 36.
\left(7x^{2}+x\right)+\left(35x+5\right)
Tuhia anō te 7x^{2}+36x+5 hei \left(7x^{2}+x\right)+\left(35x+5\right).
x\left(7x+1\right)+5\left(7x+1\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(7x+1\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi 7x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
7x^{2}+36x+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-36±\sqrt{36^{2}-4\times 7\times 5}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36±\sqrt{1296-4\times 7\times 5}}{2\times 7}
Pūrua 36.
x=\frac{-36±\sqrt{1296-28\times 5}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-36±\sqrt{1296-140}}{2\times 7}
Whakareatia -28 ki te 5.
x=\frac{-36±\sqrt{1156}}{2\times 7}
Tāpiri 1296 ki te -140.
x=\frac{-36±34}{2\times 7}
Tuhia te pūtakerua o te 1156.
x=\frac{-36±34}{14}
Whakareatia 2 ki te 7.
x=-\frac{2}{14}
Nā, me whakaoti te whārite x=\frac{-36±34}{14} ina he tāpiri te ±. Tāpiri -36 ki te 34.
x=-\frac{1}{7}
Whakahekea te hautanga \frac{-2}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{70}{14}
Nā, me whakaoti te whārite x=\frac{-36±34}{14} ina he tango te ±. Tango 34 mai i -36.
x=-5
Whakawehe -70 ki te 14.
7x^{2}+36x+5=7\left(x-\left(-\frac{1}{7}\right)\right)\left(x-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{7} mō te x_{1} me te -5 mō te x_{2}.
7x^{2}+36x+5=7\left(x+\frac{1}{7}\right)\left(x+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
7x^{2}+36x+5=7\times \frac{7x+1}{7}\left(x+5\right)
Tāpiri \frac{1}{7} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
7x^{2}+36x+5=\left(7x+1\right)\left(x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 7 i roto i te 7 me te 7.