Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}=16-3
Tangohia te 3 mai i ngā taha e rua.
7x^{2}=13
Tangohia te 3 i te 16, ka 13.
x^{2}=\frac{13}{7}
Whakawehea ngā taha e rua ki te 7.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
7x^{2}+3-16=0
Tangohia te 16 mai i ngā taha e rua.
7x^{2}-13=0
Tangohia te 16 i te 3, ka -13.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-13\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 0 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-13\right)}}{2\times 7}
Pūrua 0.
x=\frac{0±\sqrt{-28\left(-13\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{0±\sqrt{364}}{2\times 7}
Whakareatia -28 ki te -13.
x=\frac{0±2\sqrt{91}}{2\times 7}
Tuhia te pūtakerua o te 364.
x=\frac{0±2\sqrt{91}}{14}
Whakareatia 2 ki te 7.
x=\frac{\sqrt{91}}{7}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{91}}{14} ina he tāpiri te ±.
x=-\frac{\sqrt{91}}{7}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{91}}{14} ina he tango te ±.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
Kua oti te whārite te whakatau.