Whakaoti mō x
x = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x^{2}+2x-9=0
Tangohia te 9 mai i ngā taha e rua.
a+b=2 ab=7\left(-9\right)=-63
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,63 -3,21 -7,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -63.
-1+63=62 -3+21=18 -7+9=2
Tātaihia te tapeke mō ia takirua.
a=-7 b=9
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(7x^{2}-7x\right)+\left(9x-9\right)
Tuhia anō te 7x^{2}+2x-9 hei \left(7x^{2}-7x\right)+\left(9x-9\right).
7x\left(x-1\right)+9\left(x-1\right)
Tauwehea te 7x i te tuatahi me te 9 i te rōpū tuarua.
\left(x-1\right)\left(7x+9\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{9}{7}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 7x+9=0.
7x^{2}+2x=9
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
7x^{2}+2x-9=9-9
Me tango 9 mai i ngā taha e rua o te whārite.
7x^{2}+2x-9=0
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
x=\frac{-2±\sqrt{2^{2}-4\times 7\left(-9\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 2 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 7\left(-9\right)}}{2\times 7}
Pūrua 2.
x=\frac{-2±\sqrt{4-28\left(-9\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-2±\sqrt{4+252}}{2\times 7}
Whakareatia -28 ki te -9.
x=\frac{-2±\sqrt{256}}{2\times 7}
Tāpiri 4 ki te 252.
x=\frac{-2±16}{2\times 7}
Tuhia te pūtakerua o te 256.
x=\frac{-2±16}{14}
Whakareatia 2 ki te 7.
x=\frac{14}{14}
Nā, me whakaoti te whārite x=\frac{-2±16}{14} ina he tāpiri te ±. Tāpiri -2 ki te 16.
x=1
Whakawehe 14 ki te 14.
x=-\frac{18}{14}
Nā, me whakaoti te whārite x=\frac{-2±16}{14} ina he tango te ±. Tango 16 mai i -2.
x=-\frac{9}{7}
Whakahekea te hautanga \frac{-18}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{9}{7}
Kua oti te whārite te whakatau.
7x^{2}+2x=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{7x^{2}+2x}{7}=\frac{9}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{2}{7}x=\frac{9}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=\frac{9}{7}+\left(\frac{1}{7}\right)^{2}
Whakawehea te \frac{2}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{7}. Nā, tāpiria te pūrua o te \frac{1}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{9}{7}+\frac{1}{49}
Pūruatia \frac{1}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{64}{49}
Tāpiri \frac{9}{7} ki te \frac{1}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{7}\right)^{2}=\frac{64}{49}
Tauwehea x^{2}+\frac{2}{7}x+\frac{1}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{\frac{64}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{7}=\frac{8}{7} x+\frac{1}{7}=-\frac{8}{7}
Whakarūnātia.
x=1 x=-\frac{9}{7}
Me tango \frac{1}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}