Whakaoti mō x (complex solution)
x=\frac{-1+\sqrt{6}i}{7}\approx -0.142857143+0.349927106i
x=\frac{-\sqrt{6}i-1}{7}\approx -0.142857143-0.349927106i
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x^{2}+2x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 7}}{2\times 7}
Pūrua 2.
x=\frac{-2±\sqrt{4-28}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-2±\sqrt{-24}}{2\times 7}
Tāpiri 4 ki te -28.
x=\frac{-2±2\sqrt{6}i}{2\times 7}
Tuhia te pūtakerua o te -24.
x=\frac{-2±2\sqrt{6}i}{14}
Whakareatia 2 ki te 7.
x=\frac{-2+2\sqrt{6}i}{14}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}i}{14} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{6}.
x=\frac{-1+\sqrt{6}i}{7}
Whakawehe -2+2i\sqrt{6} ki te 14.
x=\frac{-2\sqrt{6}i-2}{14}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{6}i}{14} ina he tango te ±. Tango 2i\sqrt{6} mai i -2.
x=\frac{-\sqrt{6}i-1}{7}
Whakawehe -2-2i\sqrt{6} ki te 14.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
Kua oti te whārite te whakatau.
7x^{2}+2x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}+2x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
7x^{2}+2x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{7x^{2}+2x}{7}=-\frac{1}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{2}{7}x=-\frac{1}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=-\frac{1}{7}+\left(\frac{1}{7}\right)^{2}
Whakawehea te \frac{2}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{7}. Nā, tāpiria te pūrua o te \frac{1}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{1}{7}+\frac{1}{49}
Pūruatia \frac{1}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{7}x+\frac{1}{49}=-\frac{6}{49}
Tāpiri -\frac{1}{7} ki te \frac{1}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{7}\right)^{2}=-\frac{6}{49}
Tauwehea x^{2}+\frac{2}{7}x+\frac{1}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{-\frac{6}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{7}=\frac{\sqrt{6}i}{7} x+\frac{1}{7}=-\frac{\sqrt{6}i}{7}
Whakarūnātia.
x=\frac{-1+\sqrt{6}i}{7} x=\frac{-\sqrt{6}i-1}{7}
Me tango \frac{1}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}