Tauwehe
\left(7x-3\right)\left(x+3\right)
Aromātai
\left(7x-3\right)\left(x+3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=18 ab=7\left(-9\right)=-63
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 7x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,63 -3,21 -7,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -63.
-1+63=62 -3+21=18 -7+9=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=21
Ko te otinga te takirua ka hoatu i te tapeke 18.
\left(7x^{2}-3x\right)+\left(21x-9\right)
Tuhia anō te 7x^{2}+18x-9 hei \left(7x^{2}-3x\right)+\left(21x-9\right).
x\left(7x-3\right)+3\left(7x-3\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(7x-3\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 7x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
7x^{2}+18x-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-18±\sqrt{18^{2}-4\times 7\left(-9\right)}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{324-4\times 7\left(-9\right)}}{2\times 7}
Pūrua 18.
x=\frac{-18±\sqrt{324-28\left(-9\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-18±\sqrt{324+252}}{2\times 7}
Whakareatia -28 ki te -9.
x=\frac{-18±\sqrt{576}}{2\times 7}
Tāpiri 324 ki te 252.
x=\frac{-18±24}{2\times 7}
Tuhia te pūtakerua o te 576.
x=\frac{-18±24}{14}
Whakareatia 2 ki te 7.
x=\frac{6}{14}
Nā, me whakaoti te whārite x=\frac{-18±24}{14} ina he tāpiri te ±. Tāpiri -18 ki te 24.
x=\frac{3}{7}
Whakahekea te hautanga \frac{6}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{42}{14}
Nā, me whakaoti te whārite x=\frac{-18±24}{14} ina he tango te ±. Tango 24 mai i -18.
x=-3
Whakawehe -42 ki te 14.
7x^{2}+18x-9=7\left(x-\frac{3}{7}\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{7} mō te x_{1} me te -3 mō te x_{2}.
7x^{2}+18x-9=7\left(x-\frac{3}{7}\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
7x^{2}+18x-9=7\times \frac{7x-3}{7}\left(x+3\right)
Tango \frac{3}{7} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
7x^{2}+18x-9=\left(7x-3\right)\left(x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 7 i roto i te 7 me te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}