Whakaoti mō t
t = \frac{2 \sqrt{43} + 16}{7} \approx 4.15926815
t=\frac{16-2\sqrt{43}}{7}\approx 0.412160422
Tohaina
Kua tāruatia ki te papatopenga
7t^{2}-32t+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 7\times 12}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -32 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-32\right)±\sqrt{1024-4\times 7\times 12}}{2\times 7}
Pūrua -32.
t=\frac{-\left(-32\right)±\sqrt{1024-28\times 12}}{2\times 7}
Whakareatia -4 ki te 7.
t=\frac{-\left(-32\right)±\sqrt{1024-336}}{2\times 7}
Whakareatia -28 ki te 12.
t=\frac{-\left(-32\right)±\sqrt{688}}{2\times 7}
Tāpiri 1024 ki te -336.
t=\frac{-\left(-32\right)±4\sqrt{43}}{2\times 7}
Tuhia te pūtakerua o te 688.
t=\frac{32±4\sqrt{43}}{2\times 7}
Ko te tauaro o -32 ko 32.
t=\frac{32±4\sqrt{43}}{14}
Whakareatia 2 ki te 7.
t=\frac{4\sqrt{43}+32}{14}
Nā, me whakaoti te whārite t=\frac{32±4\sqrt{43}}{14} ina he tāpiri te ±. Tāpiri 32 ki te 4\sqrt{43}.
t=\frac{2\sqrt{43}+16}{7}
Whakawehe 32+4\sqrt{43} ki te 14.
t=\frac{32-4\sqrt{43}}{14}
Nā, me whakaoti te whārite t=\frac{32±4\sqrt{43}}{14} ina he tango te ±. Tango 4\sqrt{43} mai i 32.
t=\frac{16-2\sqrt{43}}{7}
Whakawehe 32-4\sqrt{43} ki te 14.
t=\frac{2\sqrt{43}+16}{7} t=\frac{16-2\sqrt{43}}{7}
Kua oti te whārite te whakatau.
7t^{2}-32t+12=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7t^{2}-32t+12-12=-12
Me tango 12 mai i ngā taha e rua o te whārite.
7t^{2}-32t=-12
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
\frac{7t^{2}-32t}{7}=-\frac{12}{7}
Whakawehea ngā taha e rua ki te 7.
t^{2}-\frac{32}{7}t=-\frac{12}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
t^{2}-\frac{32}{7}t+\left(-\frac{16}{7}\right)^{2}=-\frac{12}{7}+\left(-\frac{16}{7}\right)^{2}
Whakawehea te -\frac{32}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{16}{7}. Nā, tāpiria te pūrua o te -\frac{16}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{32}{7}t+\frac{256}{49}=-\frac{12}{7}+\frac{256}{49}
Pūruatia -\frac{16}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{32}{7}t+\frac{256}{49}=\frac{172}{49}
Tāpiri -\frac{12}{7} ki te \frac{256}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{16}{7}\right)^{2}=\frac{172}{49}
Tauwehea t^{2}-\frac{32}{7}t+\frac{256}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{16}{7}\right)^{2}}=\sqrt{\frac{172}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{16}{7}=\frac{2\sqrt{43}}{7} t-\frac{16}{7}=-\frac{2\sqrt{43}}{7}
Whakarūnātia.
t=\frac{2\sqrt{43}+16}{7} t=\frac{16-2\sqrt{43}}{7}
Me tāpiri \frac{16}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}