Whakaoti mō r
r = \frac{10 \sqrt{53} - 20}{7} \approx 7.543014128
r=\frac{-10\sqrt{53}-20}{7}\approx -13.257299842
Tohaina
Kua tāruatia ki te papatopenga
7r^{2}+40r-700=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-40±\sqrt{40^{2}-4\times 7\left(-700\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 40 mō b, me -700 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-40±\sqrt{1600-4\times 7\left(-700\right)}}{2\times 7}
Pūrua 40.
r=\frac{-40±\sqrt{1600-28\left(-700\right)}}{2\times 7}
Whakareatia -4 ki te 7.
r=\frac{-40±\sqrt{1600+19600}}{2\times 7}
Whakareatia -28 ki te -700.
r=\frac{-40±\sqrt{21200}}{2\times 7}
Tāpiri 1600 ki te 19600.
r=\frac{-40±20\sqrt{53}}{2\times 7}
Tuhia te pūtakerua o te 21200.
r=\frac{-40±20\sqrt{53}}{14}
Whakareatia 2 ki te 7.
r=\frac{20\sqrt{53}-40}{14}
Nā, me whakaoti te whārite r=\frac{-40±20\sqrt{53}}{14} ina he tāpiri te ±. Tāpiri -40 ki te 20\sqrt{53}.
r=\frac{10\sqrt{53}-20}{7}
Whakawehe -40+20\sqrt{53} ki te 14.
r=\frac{-20\sqrt{53}-40}{14}
Nā, me whakaoti te whārite r=\frac{-40±20\sqrt{53}}{14} ina he tango te ±. Tango 20\sqrt{53} mai i -40.
r=\frac{-10\sqrt{53}-20}{7}
Whakawehe -40-20\sqrt{53} ki te 14.
r=\frac{10\sqrt{53}-20}{7} r=\frac{-10\sqrt{53}-20}{7}
Kua oti te whārite te whakatau.
7r^{2}+40r-700=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7r^{2}+40r-700-\left(-700\right)=-\left(-700\right)
Me tāpiri 700 ki ngā taha e rua o te whārite.
7r^{2}+40r=-\left(-700\right)
Mā te tango i te -700 i a ia ake anō ka toe ko te 0.
7r^{2}+40r=700
Tango -700 mai i 0.
\frac{7r^{2}+40r}{7}=\frac{700}{7}
Whakawehea ngā taha e rua ki te 7.
r^{2}+\frac{40}{7}r=\frac{700}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
r^{2}+\frac{40}{7}r=100
Whakawehe 700 ki te 7.
r^{2}+\frac{40}{7}r+\left(\frac{20}{7}\right)^{2}=100+\left(\frac{20}{7}\right)^{2}
Whakawehea te \frac{40}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{20}{7}. Nā, tāpiria te pūrua o te \frac{20}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
r^{2}+\frac{40}{7}r+\frac{400}{49}=100+\frac{400}{49}
Pūruatia \frac{20}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
r^{2}+\frac{40}{7}r+\frac{400}{49}=\frac{5300}{49}
Tāpiri 100 ki te \frac{400}{49}.
\left(r+\frac{20}{7}\right)^{2}=\frac{5300}{49}
Tauwehea r^{2}+\frac{40}{7}r+\frac{400}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{20}{7}\right)^{2}}=\sqrt{\frac{5300}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r+\frac{20}{7}=\frac{10\sqrt{53}}{7} r+\frac{20}{7}=-\frac{10\sqrt{53}}{7}
Whakarūnātia.
r=\frac{10\sqrt{53}-20}{7} r=\frac{-10\sqrt{53}-20}{7}
Me tango \frac{20}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}