Whakaoti mō n
n=-6
n=\frac{3}{7}\approx 0.428571429
Tohaina
Kua tāruatia ki te papatopenga
a+b=39 ab=7\left(-18\right)=-126
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7n^{2}+an+bn-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,126 -2,63 -3,42 -6,21 -7,18 -9,14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -126.
-1+126=125 -2+63=61 -3+42=39 -6+21=15 -7+18=11 -9+14=5
Tātaihia te tapeke mō ia takirua.
a=-3 b=42
Ko te otinga te takirua ka hoatu i te tapeke 39.
\left(7n^{2}-3n\right)+\left(42n-18\right)
Tuhia anō te 7n^{2}+39n-18 hei \left(7n^{2}-3n\right)+\left(42n-18\right).
n\left(7n-3\right)+6\left(7n-3\right)
Tauwehea te n i te tuatahi me te 6 i te rōpū tuarua.
\left(7n-3\right)\left(n+6\right)
Whakatauwehea atu te kīanga pātahi 7n-3 mā te whakamahi i te āhuatanga tātai tohatoha.
n=\frac{3}{7} n=-6
Hei kimi otinga whārite, me whakaoti te 7n-3=0 me te n+6=0.
7n^{2}+39n-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-39±\sqrt{39^{2}-4\times 7\left(-18\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 39 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-39±\sqrt{1521-4\times 7\left(-18\right)}}{2\times 7}
Pūrua 39.
n=\frac{-39±\sqrt{1521-28\left(-18\right)}}{2\times 7}
Whakareatia -4 ki te 7.
n=\frac{-39±\sqrt{1521+504}}{2\times 7}
Whakareatia -28 ki te -18.
n=\frac{-39±\sqrt{2025}}{2\times 7}
Tāpiri 1521 ki te 504.
n=\frac{-39±45}{2\times 7}
Tuhia te pūtakerua o te 2025.
n=\frac{-39±45}{14}
Whakareatia 2 ki te 7.
n=\frac{6}{14}
Nā, me whakaoti te whārite n=\frac{-39±45}{14} ina he tāpiri te ±. Tāpiri -39 ki te 45.
n=\frac{3}{7}
Whakahekea te hautanga \frac{6}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=-\frac{84}{14}
Nā, me whakaoti te whārite n=\frac{-39±45}{14} ina he tango te ±. Tango 45 mai i -39.
n=-6
Whakawehe -84 ki te 14.
n=\frac{3}{7} n=-6
Kua oti te whārite te whakatau.
7n^{2}+39n-18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7n^{2}+39n-18-\left(-18\right)=-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
7n^{2}+39n=-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
7n^{2}+39n=18
Tango -18 mai i 0.
\frac{7n^{2}+39n}{7}=\frac{18}{7}
Whakawehea ngā taha e rua ki te 7.
n^{2}+\frac{39}{7}n=\frac{18}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
n^{2}+\frac{39}{7}n+\left(\frac{39}{14}\right)^{2}=\frac{18}{7}+\left(\frac{39}{14}\right)^{2}
Whakawehea te \frac{39}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{39}{14}. Nā, tāpiria te pūrua o te \frac{39}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{39}{7}n+\frac{1521}{196}=\frac{18}{7}+\frac{1521}{196}
Pūruatia \frac{39}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{39}{7}n+\frac{1521}{196}=\frac{2025}{196}
Tāpiri \frac{18}{7} ki te \frac{1521}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n+\frac{39}{14}\right)^{2}=\frac{2025}{196}
Tauwehea n^{2}+\frac{39}{7}n+\frac{1521}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{39}{14}\right)^{2}}=\sqrt{\frac{2025}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{39}{14}=\frac{45}{14} n+\frac{39}{14}=-\frac{45}{14}
Whakarūnātia.
n=\frac{3}{7} n=-6
Me tango \frac{39}{14} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}