Aromātai
-m
Kimi Pārōnaki e ai ki m
-1
Pātaitai
Polynomial
7 m - ( - m ) - 9 m =
Tohaina
Kua tāruatia ki te papatopenga
7m+m-9m
Whakareatia te -1 ki te -1, ka 1.
8m-9m
Pahekotia te 7m me m, ka 8m.
-m
Pahekotia te 8m me -9m, ka -m.
\frac{\mathrm{d}}{\mathrm{d}m}(7m+m-9m)
Whakareatia te -1 ki te -1, ka 1.
\frac{\mathrm{d}}{\mathrm{d}m}(8m-9m)
Pahekotia te 7m me m, ka 8m.
\frac{\mathrm{d}}{\mathrm{d}m}(-m)
Pahekotia te 8m me -9m, ka -m.
-m^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-m^{0}
Tango 1 mai i 1.
-1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}