Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7m^{2}-25m+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 7\times 6}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-25\right)±\sqrt{625-4\times 7\times 6}}{2\times 7}
Pūrua -25.
m=\frac{-\left(-25\right)±\sqrt{625-28\times 6}}{2\times 7}
Whakareatia -4 ki te 7.
m=\frac{-\left(-25\right)±\sqrt{625-168}}{2\times 7}
Whakareatia -28 ki te 6.
m=\frac{-\left(-25\right)±\sqrt{457}}{2\times 7}
Tāpiri 625 ki te -168.
m=\frac{25±\sqrt{457}}{2\times 7}
Ko te tauaro o -25 ko 25.
m=\frac{25±\sqrt{457}}{14}
Whakareatia 2 ki te 7.
m=\frac{\sqrt{457}+25}{14}
Nā, me whakaoti te whārite m=\frac{25±\sqrt{457}}{14} ina he tāpiri te ±. Tāpiri 25 ki te \sqrt{457}.
m=\frac{25-\sqrt{457}}{14}
Nā, me whakaoti te whārite m=\frac{25±\sqrt{457}}{14} ina he tango te ±. Tango \sqrt{457} mai i 25.
7m^{2}-25m+6=7\left(m-\frac{\sqrt{457}+25}{14}\right)\left(m-\frac{25-\sqrt{457}}{14}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{25+\sqrt{457}}{14} mō te x_{1} me te \frac{25-\sqrt{457}}{14} mō te x_{2}.