Tauwehe
7\left(m-8\right)\left(m+9\right)
Aromātai
7\left(m-8\right)\left(m+9\right)
Tohaina
Kua tāruatia ki te papatopenga
7\left(m^{2}+m-72\right)
Tauwehea te 7.
a+b=1 ab=1\left(-72\right)=-72
Whakaarohia te m^{2}+m-72. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm-72. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-8 b=9
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(m^{2}-8m\right)+\left(9m-72\right)
Tuhia anō te m^{2}+m-72 hei \left(m^{2}-8m\right)+\left(9m-72\right).
m\left(m-8\right)+9\left(m-8\right)
Tauwehea te m i te tuatahi me te 9 i te rōpū tuarua.
\left(m-8\right)\left(m+9\right)
Whakatauwehea atu te kīanga pātahi m-8 mā te whakamahi i te āhuatanga tātai tohatoha.
7\left(m-8\right)\left(m+9\right)
Me tuhi anō te kīanga whakatauwehe katoa.
7m^{2}+7m-504=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-7±\sqrt{7^{2}-4\times 7\left(-504\right)}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-7±\sqrt{49-4\times 7\left(-504\right)}}{2\times 7}
Pūrua 7.
m=\frac{-7±\sqrt{49-28\left(-504\right)}}{2\times 7}
Whakareatia -4 ki te 7.
m=\frac{-7±\sqrt{49+14112}}{2\times 7}
Whakareatia -28 ki te -504.
m=\frac{-7±\sqrt{14161}}{2\times 7}
Tāpiri 49 ki te 14112.
m=\frac{-7±119}{2\times 7}
Tuhia te pūtakerua o te 14161.
m=\frac{-7±119}{14}
Whakareatia 2 ki te 7.
m=\frac{112}{14}
Nā, me whakaoti te whārite m=\frac{-7±119}{14} ina he tāpiri te ±. Tāpiri -7 ki te 119.
m=8
Whakawehe 112 ki te 14.
m=-\frac{126}{14}
Nā, me whakaoti te whārite m=\frac{-7±119}{14} ina he tango te ±. Tango 119 mai i -7.
m=-9
Whakawehe -126 ki te 14.
7m^{2}+7m-504=7\left(m-8\right)\left(m-\left(-9\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 8 mō te x_{1} me te -9 mō te x_{2}.
7m^{2}+7m-504=7\left(m-8\right)\left(m+9\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}