Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7k^{2}+18k-27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-18±\sqrt{18^{2}-4\times 7\left(-27\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 18 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-18±\sqrt{324-4\times 7\left(-27\right)}}{2\times 7}
Pūrua 18.
k=\frac{-18±\sqrt{324-28\left(-27\right)}}{2\times 7}
Whakareatia -4 ki te 7.
k=\frac{-18±\sqrt{324+756}}{2\times 7}
Whakareatia -28 ki te -27.
k=\frac{-18±\sqrt{1080}}{2\times 7}
Tāpiri 324 ki te 756.
k=\frac{-18±6\sqrt{30}}{2\times 7}
Tuhia te pūtakerua o te 1080.
k=\frac{-18±6\sqrt{30}}{14}
Whakareatia 2 ki te 7.
k=\frac{6\sqrt{30}-18}{14}
Nā, me whakaoti te whārite k=\frac{-18±6\sqrt{30}}{14} ina he tāpiri te ±. Tāpiri -18 ki te 6\sqrt{30}.
k=\frac{3\sqrt{30}-9}{7}
Whakawehe -18+6\sqrt{30} ki te 14.
k=\frac{-6\sqrt{30}-18}{14}
Nā, me whakaoti te whārite k=\frac{-18±6\sqrt{30}}{14} ina he tango te ±. Tango 6\sqrt{30} mai i -18.
k=\frac{-3\sqrt{30}-9}{7}
Whakawehe -18-6\sqrt{30} ki te 14.
k=\frac{3\sqrt{30}-9}{7} k=\frac{-3\sqrt{30}-9}{7}
Kua oti te whārite te whakatau.
7k^{2}+18k-27=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7k^{2}+18k-27-\left(-27\right)=-\left(-27\right)
Me tāpiri 27 ki ngā taha e rua o te whārite.
7k^{2}+18k=-\left(-27\right)
Mā te tango i te -27 i a ia ake anō ka toe ko te 0.
7k^{2}+18k=27
Tango -27 mai i 0.
\frac{7k^{2}+18k}{7}=\frac{27}{7}
Whakawehea ngā taha e rua ki te 7.
k^{2}+\frac{18}{7}k=\frac{27}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
k^{2}+\frac{18}{7}k+\left(\frac{9}{7}\right)^{2}=\frac{27}{7}+\left(\frac{9}{7}\right)^{2}
Whakawehea te \frac{18}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{7}. Nā, tāpiria te pūrua o te \frac{9}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+\frac{18}{7}k+\frac{81}{49}=\frac{27}{7}+\frac{81}{49}
Pūruatia \frac{9}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
k^{2}+\frac{18}{7}k+\frac{81}{49}=\frac{270}{49}
Tāpiri \frac{27}{7} ki te \frac{81}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(k+\frac{9}{7}\right)^{2}=\frac{270}{49}
Tauwehea k^{2}+\frac{18}{7}k+\frac{81}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{9}{7}\right)^{2}}=\sqrt{\frac{270}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+\frac{9}{7}=\frac{3\sqrt{30}}{7} k+\frac{9}{7}=-\frac{3\sqrt{30}}{7}
Whakarūnātia.
k=\frac{3\sqrt{30}-9}{7} k=\frac{-3\sqrt{30}-9}{7}
Me tango \frac{9}{7} mai i ngā taha e rua o te whārite.