Whakaoti mō f
f=\frac{\sqrt{301}}{14}-\frac{1}{2}\approx 0.739239398
f=-\frac{\sqrt{301}}{14}-\frac{1}{2}\approx -1.739239398
Tohaina
Kua tāruatia ki te papatopenga
7f^{2}+7f-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
f=\frac{-7±\sqrt{7^{2}-4\times 7\left(-9\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 7 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-7±\sqrt{49-4\times 7\left(-9\right)}}{2\times 7}
Pūrua 7.
f=\frac{-7±\sqrt{49-28\left(-9\right)}}{2\times 7}
Whakareatia -4 ki te 7.
f=\frac{-7±\sqrt{49+252}}{2\times 7}
Whakareatia -28 ki te -9.
f=\frac{-7±\sqrt{301}}{2\times 7}
Tāpiri 49 ki te 252.
f=\frac{-7±\sqrt{301}}{14}
Whakareatia 2 ki te 7.
f=\frac{\sqrt{301}-7}{14}
Nā, me whakaoti te whārite f=\frac{-7±\sqrt{301}}{14} ina he tāpiri te ±. Tāpiri -7 ki te \sqrt{301}.
f=\frac{\sqrt{301}}{14}-\frac{1}{2}
Whakawehe -7+\sqrt{301} ki te 14.
f=\frac{-\sqrt{301}-7}{14}
Nā, me whakaoti te whārite f=\frac{-7±\sqrt{301}}{14} ina he tango te ±. Tango \sqrt{301} mai i -7.
f=-\frac{\sqrt{301}}{14}-\frac{1}{2}
Whakawehe -7-\sqrt{301} ki te 14.
f=\frac{\sqrt{301}}{14}-\frac{1}{2} f=-\frac{\sqrt{301}}{14}-\frac{1}{2}
Kua oti te whārite te whakatau.
7f^{2}+7f-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7f^{2}+7f-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
7f^{2}+7f=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
7f^{2}+7f=9
Tango -9 mai i 0.
\frac{7f^{2}+7f}{7}=\frac{9}{7}
Whakawehea ngā taha e rua ki te 7.
f^{2}+\frac{7}{7}f=\frac{9}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
f^{2}+f=\frac{9}{7}
Whakawehe 7 ki te 7.
f^{2}+f+\left(\frac{1}{2}\right)^{2}=\frac{9}{7}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
f^{2}+f+\frac{1}{4}=\frac{9}{7}+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
f^{2}+f+\frac{1}{4}=\frac{43}{28}
Tāpiri \frac{9}{7} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(f+\frac{1}{2}\right)^{2}=\frac{43}{28}
Tauwehea f^{2}+f+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f+\frac{1}{2}\right)^{2}}=\sqrt{\frac{43}{28}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
f+\frac{1}{2}=\frac{\sqrt{301}}{14} f+\frac{1}{2}=-\frac{\sqrt{301}}{14}
Whakarūnātia.
f=\frac{\sqrt{301}}{14}-\frac{1}{2} f=-\frac{\sqrt{301}}{14}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}