Whakaoti mō x
x=\frac{14}{19}\approx 0.736842105
Graph
Tohaina
Kua tāruatia ki te papatopenga
7-6x+6=7x-\left(1-6x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te x-1.
13-6x=7x-\left(1-6x\right)
Tāpirihia te 7 ki te 6, ka 13.
13-6x=7x-1-\left(-6x\right)
Hei kimi i te tauaro o 1-6x, kimihia te tauaro o ia taurangi.
13-6x=7x-1+6x
Ko te tauaro o -6x ko 6x.
13-6x=13x-1
Pahekotia te 7x me 6x, ka 13x.
13-6x-13x=-1
Tangohia te 13x mai i ngā taha e rua.
13-19x=-1
Pahekotia te -6x me -13x, ka -19x.
-19x=-1-13
Tangohia te 13 mai i ngā taha e rua.
-19x=-14
Tangohia te 13 i te -1, ka -14.
x=\frac{-14}{-19}
Whakawehea ngā taha e rua ki te -19.
x=\frac{14}{19}
Ka taea te hautanga \frac{-14}{-19} te whakamāmā ki te \frac{14}{19} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}