Whakaoti mō x
x=-4
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
7 - 1 \frac { 1 } { 4 } x + \frac { 1 } { 2 } x = 10
Tohaina
Kua tāruatia ki te papatopenga
4\left(7-\frac{1\times 4+1}{4}x\right)+2x=40
Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
4\left(7-\frac{4+1}{4}x\right)+2x=40
Whakareatia te 1 ki te 4, ka 4.
4\left(7-\frac{5}{4}x\right)+2x=40
Tāpirihia te 4 ki te 1, ka 5.
28+4\left(-\frac{5}{4}\right)x+2x=40
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 7-\frac{5}{4}x.
28-5x+2x=40
Me whakakore te 4 me te 4.
28-3x=40
Pahekotia te -5x me 2x, ka -3x.
-3x=40-28
Tangohia te 28 mai i ngā taha e rua.
-3x=12
Tangohia te 28 i te 40, ka 12.
x=\frac{12}{-3}
Whakawehea ngā taha e rua ki te -3.
x=-4
Whakawehea te 12 ki te -3, kia riro ko -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}