Aromātai
\frac{7b-67}{b-9}
Kimi Pārōnaki e ai ki b
\frac{4}{\left(b-9\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\left(b-9\right)}{b-9}-\frac{4}{b-9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 7 ki te \frac{b-9}{b-9}.
\frac{7\left(b-9\right)-4}{b-9}
Tā te mea he rite te tauraro o \frac{7\left(b-9\right)}{b-9} me \frac{4}{b-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{7b-63-4}{b-9}
Mahia ngā whakarea i roto o 7\left(b-9\right)-4.
\frac{7b-67}{b-9}
Whakakotahitia ngā kupu rite i 7b-63-4.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7\left(b-9\right)}{b-9}-\frac{4}{b-9})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 7 ki te \frac{b-9}{b-9}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7\left(b-9\right)-4}{b-9})
Tā te mea he rite te tauraro o \frac{7\left(b-9\right)}{b-9} me \frac{4}{b-9}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7b-63-4}{b-9})
Mahia ngā whakarea i roto o 7\left(b-9\right)-4.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7b-67}{b-9})
Whakakotahitia ngā kupu rite i 7b-63-4.
\frac{\left(b^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}b}(7b^{1}-67)-\left(7b^{1}-67\right)\frac{\mathrm{d}}{\mathrm{d}b}(b^{1}-9)}{\left(b^{1}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(b^{1}-9\right)\times 7b^{1-1}-\left(7b^{1}-67\right)b^{1-1}}{\left(b^{1}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(b^{1}-9\right)\times 7b^{0}-\left(7b^{1}-67\right)b^{0}}{\left(b^{1}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{b^{1}\times 7b^{0}-9\times 7b^{0}-\left(7b^{1}b^{0}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{7b^{1}-9\times 7b^{0}-\left(7b^{1}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{7b^{1}-63b^{0}-\left(7b^{1}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{7b^{1}-63b^{0}-7b^{1}-\left(-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(7-7\right)b^{1}+\left(-63-\left(-67\right)\right)b^{0}}{\left(b^{1}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{4b^{0}}{\left(b^{1}-9\right)^{2}}
Tangohia te 7 i 7 me te -67 i te -63.
\frac{4b^{0}}{\left(b-9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{4\times 1}{\left(b-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{4}{\left(b-9\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}