Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
7-\left(x+4-3x-1\right)=x+4
Hei kimi i te tauaro o 3x+1, kimihia te tauaro o ia taurangi.
7-\left(-2x+4-1\right)=x+4
Pahekotia te x me -3x, ka -2x.
7-\left(-2x+3\right)=x+4
Tangohia te 1 i te 4, ka 3.
7-\left(-2x\right)-3=x+4
Hei kimi i te tauaro o -2x+3, kimihia te tauaro o ia taurangi.
7+2x-3=x+4
Ko te tauaro o -2x ko 2x.
4+2x=x+4
Tangohia te 3 i te 7, ka 4.
4+2x-x=4
Tangohia te x mai i ngā taha e rua.
4+x=4
Pahekotia te 2x me -x, ka x.
x=4-4
Tangohia te 4 mai i ngā taha e rua.
x=0
Tangohia te 4 i te 4, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}