Whakaoti mō y
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
7y-21=2\left(y-9\right)+2y
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te y-3.
7y-21=2y-18+2y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-9.
7y-21=4y-18
Pahekotia te 2y me 2y, ka 4y.
7y-21-4y=-18
Tangohia te 4y mai i ngā taha e rua.
3y-21=-18
Pahekotia te 7y me -4y, ka 3y.
3y=-18+21
Me tāpiri te 21 ki ngā taha e rua.
3y=3
Tāpirihia te -18 ki te 21, ka 3.
y=\frac{3}{3}
Whakawehea ngā taha e rua ki te 3.
y=1
Whakawehea te 3 ki te 3, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}