Whakaoti mō v
v = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Tohaina
Kua tāruatia ki te papatopenga
7v-7=7v+4-4\left(-3v-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te v-1.
7v-7=7v+4+12v+4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -3v-1.
7v-7=19v+4+4
Pahekotia te 7v me 12v, ka 19v.
7v-7=19v+8
Tāpirihia te 4 ki te 4, ka 8.
7v-7-19v=8
Tangohia te 19v mai i ngā taha e rua.
-12v-7=8
Pahekotia te 7v me -19v, ka -12v.
-12v=8+7
Me tāpiri te 7 ki ngā taha e rua.
-12v=15
Tāpirihia te 8 ki te 7, ka 15.
v=\frac{15}{-12}
Whakawehea ngā taha e rua ki te -12.
v=-\frac{5}{4}
Whakahekea te hautanga \frac{15}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}