Aromātai
\frac{7}{5x^{2}}
Kimi Pārōnaki e ai ki x
-\frac{14}{5x^{3}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\times 25^{-\frac{1}{2}}\left(x^{4}\right)^{-\frac{1}{2}}
Whakarohaina te \left(25x^{4}\right)^{-\frac{1}{2}}.
7\times 25^{-\frac{1}{2}}x^{-2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te -\frac{1}{2} kia riro ai te -2.
7\times \frac{1}{5}x^{-2}
Tātaihia te 25 mā te pū o -\frac{1}{2}, kia riro ko \frac{1}{5}.
\frac{7}{5}x^{-2}
Whakareatia te 7 ki te \frac{1}{5}, ka \frac{7}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(7\times 25^{-\frac{1}{2}}\left(x^{4}\right)^{-\frac{1}{2}})
Whakarohaina te \left(25x^{4}\right)^{-\frac{1}{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(7\times 25^{-\frac{1}{2}}x^{-2})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te -\frac{1}{2} kia riro ai te -2.
\frac{\mathrm{d}}{\mathrm{d}x}(7\times \frac{1}{5}x^{-2})
Tātaihia te 25 mā te pū o -\frac{1}{2}, kia riro ko \frac{1}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7}{5}x^{-2})
Whakareatia te 7 ki te \frac{1}{5}, ka \frac{7}{5}.
-2\times \frac{7}{5}x^{-2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{14}{5}x^{-2-1}
Whakareatia -2 ki te \frac{7}{5}.
-\frac{14}{5}x^{-3}
Tango 1 mai i -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}