Whakaoti mō x
x=\frac{13}{50}=0.26
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\left(2-5x\right)-5x+5=12\left(x+\frac{1}{6}\right)-2x+4
Pahekotia te -x me -4x, ka -5x.
14-35x-5x+5=12\left(x+\frac{1}{6}\right)-2x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 2-5x.
14-40x+5=12\left(x+\frac{1}{6}\right)-2x+4
Pahekotia te -35x me -5x, ka -40x.
19-40x=12\left(x+\frac{1}{6}\right)-2x+4
Tāpirihia te 14 ki te 5, ka 19.
19-40x=12x+12\times \frac{1}{6}-2x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x+\frac{1}{6}.
19-40x=12x+\frac{12}{6}-2x+4
Whakareatia te 12 ki te \frac{1}{6}, ka \frac{12}{6}.
19-40x=12x+2-2x+4
Whakawehea te 12 ki te 6, kia riro ko 2.
19-40x=10x+2+4
Pahekotia te 12x me -2x, ka 10x.
19-40x=10x+6
Tāpirihia te 2 ki te 4, ka 6.
19-40x-10x=6
Tangohia te 10x mai i ngā taha e rua.
19-50x=6
Pahekotia te -40x me -10x, ka -50x.
-50x=6-19
Tangohia te 19 mai i ngā taha e rua.
-50x=-13
Tangohia te 19 i te 6, ka -13.
x=\frac{-13}{-50}
Whakawehea ngā taha e rua ki te -50.
x=\frac{13}{50}
Ka taea te hautanga \frac{-13}{-50} te whakamāmā ki te \frac{13}{50} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}