Whakaoti mō n
n = \frac{59}{7} = 8\frac{3}{7} \approx 8.428571429
Tohaina
Kua tāruatia ki te papatopenga
2-\frac{28+7}{-7}-n=-\frac{10}{7}
Whakawehea ngā taha e rua ki te 7.
14+28+7-7n=-10
Me whakarea ngā taha e rua o te whārite ki te 7, arā, te tauraro pātahi he tino iti rawa te kitea o -7,7.
42+7-7n=-10
Tāpirihia te 14 ki te 28, ka 42.
49-7n=-10
Tāpirihia te 42 ki te 7, ka 49.
-7n=-10-49
Tangohia te 49 mai i ngā taha e rua.
-7n=-59
Tangohia te 49 i te -10, ka -59.
n=\frac{-59}{-7}
Whakawehea ngā taha e rua ki te -7.
n=\frac{59}{7}
Ka taea te hautanga \frac{-59}{-7} te whakamāmā ki te \frac{59}{7} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}