Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7\left(\frac{17}{3}-43\right)=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
7\left(\frac{17}{3}-\frac{129}{3}\right)=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Me tahuri te 43 ki te hautau \frac{129}{3}.
7\times \frac{17-129}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tā te mea he rite te tauraro o \frac{17}{3} me \frac{129}{3}, me tango rāua mā te tango i ō raua taurunga.
7\left(-\frac{112}{3}\right)=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tangohia te 129 i te 17, ka -112.
\frac{7\left(-112\right)}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Tuhia te 7\left(-\frac{112}{3}\right) hei hautanga kotahi.
\frac{-784}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Whakareatia te 7 ki te -112, ka -784.
-\frac{784}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{8}{10}-\frac{\frac{4}{9}}{2}\right)
Ka taea te hautanga \frac{-784}{3} te tuhi anō ko -\frac{784}{3} mā te tango i te tohu tōraro.
-\frac{784}{3}=\frac{5}{7}x\left(\frac{5}{4}\times \frac{4}{5}-\frac{\frac{4}{9}}{2}\right)
Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{784}{3}=\frac{5}{7}x\left(1-\frac{\frac{4}{9}}{2}\right)
Me whakakore atu te \frac{5}{4} me tōna tau utu \frac{4}{5}.
-\frac{784}{3}=\frac{5}{7}x\left(1-\frac{4}{9\times 2}\right)
Tuhia te \frac{\frac{4}{9}}{2} hei hautanga kotahi.
-\frac{784}{3}=\frac{5}{7}x\left(1-\frac{4}{18}\right)
Whakareatia te 9 ki te 2, ka 18.
-\frac{784}{3}=\frac{5}{7}x\left(1-\frac{2}{9}\right)
Whakahekea te hautanga \frac{4}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{784}{3}=\frac{5}{7}x\left(\frac{9}{9}-\frac{2}{9}\right)
Me tahuri te 1 ki te hautau \frac{9}{9}.
-\frac{784}{3}=\frac{5}{7}x\times \frac{9-2}{9}
Tā te mea he rite te tauraro o \frac{9}{9} me \frac{2}{9}, me tango rāua mā te tango i ō raua taurunga.
-\frac{784}{3}=\frac{5}{7}x\times \frac{7}{9}
Tangohia te 2 i te 9, ka 7.
-\frac{784}{3}=\frac{5\times 7}{7\times 9}x
Me whakarea te \frac{5}{7} ki te \frac{7}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{784}{3}=\frac{5}{9}x
Me whakakore tahi te 7 i te taurunga me te tauraro.
\frac{5}{9}x=-\frac{784}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=-\frac{784}{3}\times \frac{9}{5}
Me whakarea ngā taha e rua ki te \frac{9}{5}, te tau utu o \frac{5}{9}.
x=\frac{-784\times 9}{3\times 5}
Me whakarea te -\frac{784}{3} ki te \frac{9}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-7056}{15}
Mahia ngā whakarea i roto i te hautanga \frac{-784\times 9}{3\times 5}.
x=-\frac{2352}{5}
Whakahekea te hautanga \frac{-7056}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.