Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}-3x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-5\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, -3 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-5\right)}}{2\times 7}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-5\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-\left(-3\right)±\sqrt{9+140}}{2\times 7}
Whakareatia -28 ki te -5.
x=\frac{-\left(-3\right)±\sqrt{149}}{2\times 7}
Tāpiri 9 ki te 140.
x=\frac{3±\sqrt{149}}{2\times 7}
Ko te tauaro o -3 ko 3.
x=\frac{3±\sqrt{149}}{14}
Whakareatia 2 ki te 7.
x=\frac{\sqrt{149}+3}{14}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{149}}{14} ina he tāpiri te ±. Tāpiri 3 ki te \sqrt{149}.
x=\frac{3-\sqrt{149}}{14}
Nā, me whakaoti te whārite x=\frac{3±\sqrt{149}}{14} ina he tango te ±. Tango \sqrt{149} mai i 3.
x=\frac{\sqrt{149}+3}{14} x=\frac{3-\sqrt{149}}{14}
Kua oti te whārite te whakatau.
7x^{2}-3x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
7x^{2}-3x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
7x^{2}-3x=5
Tango -5 mai i 0.
\frac{7x^{2}-3x}{7}=\frac{5}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}-\frac{3}{7}x=\frac{5}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{5}{7}+\left(-\frac{3}{14}\right)^{2}
Whakawehea te -\frac{3}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{14}. Nā, tāpiria te pūrua o te -\frac{3}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{5}{7}+\frac{9}{196}
Pūruatia -\frac{3}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{149}{196}
Tāpiri \frac{5}{7} ki te \frac{9}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{14}\right)^{2}=\frac{149}{196}
Tauwehea x^{2}-\frac{3}{7}x+\frac{9}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{149}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{14}=\frac{\sqrt{149}}{14} x-\frac{3}{14}=-\frac{\sqrt{149}}{14}
Whakarūnātia.
x=\frac{\sqrt{149}+3}{14} x=\frac{3-\sqrt{149}}{14}
Me tāpiri \frac{3}{14} ki ngā taha e rua o te whārite.