Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{21}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}=3
Whakawehea te 21 ki te 7, kia riro ko 3.
x=\sqrt{3} x=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{21}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}=3
Whakawehea te 21 ki te 7, kia riro ko 3.
x^{2}-3=0
Tangohia te 3 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{12}}{2}
Whakareatia -4 ki te -3.
x=\frac{0±2\sqrt{3}}{2}
Tuhia te pūtakerua o te 12.
x=\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{3}}{2} ina he tāpiri te ±.
x=-\sqrt{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{3}}{2} ina he tango te ±.
x=\sqrt{3} x=-\sqrt{3}
Kua oti te whārite te whakatau.