Whakaoti mō x (complex solution)
x=-\frac{2\sqrt{770}i}{55}\approx -0-1.009049958i
x=\frac{2\sqrt{770}i}{55}\approx 1.009049958i
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\times 8+8\times 7xx=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
7\times 8+8\times 7x^{2}=xx
Whakareatia te x ki te x, ka x^{2}.
7\times 8+8\times 7x^{2}=x^{2}
Whakareatia te x ki te x, ka x^{2}.
56+56x^{2}=x^{2}
Whakareatia te 7 ki te 8, ka 56. Whakareatia te 8 ki te 7, ka 56.
56+56x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
56+55x^{2}=0
Pahekotia te 56x^{2} me -x^{2}, ka 55x^{2}.
55x^{2}=-56
Tangohia te 56 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{56}{55}
Whakawehea ngā taha e rua ki te 55.
x=\frac{2\sqrt{770}i}{55} x=-\frac{2\sqrt{770}i}{55}
Kua oti te whārite te whakatau.
7\times 8+8\times 7xx=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
7\times 8+8\times 7x^{2}=xx
Whakareatia te x ki te x, ka x^{2}.
7\times 8+8\times 7x^{2}=x^{2}
Whakareatia te x ki te x, ka x^{2}.
56+56x^{2}=x^{2}
Whakareatia te 7 ki te 8, ka 56. Whakareatia te 8 ki te 7, ka 56.
56+56x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
56+55x^{2}=0
Pahekotia te 56x^{2} me -x^{2}, ka 55x^{2}.
55x^{2}+56=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 55\times 56}}{2\times 55}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 55 mō a, 0 mō b, me 56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 55\times 56}}{2\times 55}
Pūrua 0.
x=\frac{0±\sqrt{-220\times 56}}{2\times 55}
Whakareatia -4 ki te 55.
x=\frac{0±\sqrt{-12320}}{2\times 55}
Whakareatia -220 ki te 56.
x=\frac{0±4\sqrt{770}i}{2\times 55}
Tuhia te pūtakerua o te -12320.
x=\frac{0±4\sqrt{770}i}{110}
Whakareatia 2 ki te 55.
x=\frac{2\sqrt{770}i}{55}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{770}i}{110} ina he tāpiri te ±.
x=-\frac{2\sqrt{770}i}{55}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{770}i}{110} ina he tango te ±.
x=\frac{2\sqrt{770}i}{55} x=-\frac{2\sqrt{770}i}{55}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}