Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7\times 8+8\times 7x=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
7\times 8+8\times 7x=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
56+56x=2x^{2}
Whakareatia te 7 ki te 8, ka 56. Whakareatia te 8 ki te 7, ka 56.
56+56x-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
-2x^{2}+56x+56=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-56±\sqrt{56^{2}-4\left(-2\right)\times 56}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 56 mō b, me 56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-56±\sqrt{3136-4\left(-2\right)\times 56}}{2\left(-2\right)}
Pūrua 56.
x=\frac{-56±\sqrt{3136+8\times 56}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-56±\sqrt{3136+448}}{2\left(-2\right)}
Whakareatia 8 ki te 56.
x=\frac{-56±\sqrt{3584}}{2\left(-2\right)}
Tāpiri 3136 ki te 448.
x=\frac{-56±16\sqrt{14}}{2\left(-2\right)}
Tuhia te pūtakerua o te 3584.
x=\frac{-56±16\sqrt{14}}{-4}
Whakareatia 2 ki te -2.
x=\frac{16\sqrt{14}-56}{-4}
Nā, me whakaoti te whārite x=\frac{-56±16\sqrt{14}}{-4} ina he tāpiri te ±. Tāpiri -56 ki te 16\sqrt{14}.
x=14-4\sqrt{14}
Whakawehe -56+16\sqrt{14} ki te -4.
x=\frac{-16\sqrt{14}-56}{-4}
Nā, me whakaoti te whārite x=\frac{-56±16\sqrt{14}}{-4} ina he tango te ±. Tango 16\sqrt{14} mai i -56.
x=4\sqrt{14}+14
Whakawehe -56-16\sqrt{14} ki te -4.
x=14-4\sqrt{14} x=4\sqrt{14}+14
Kua oti te whārite te whakatau.
7\times 8+8\times 7x=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
7\times 8+8\times 7x=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
56+56x=2x^{2}
Whakareatia te 7 ki te 8, ka 56. Whakareatia te 8 ki te 7, ka 56.
56+56x-2x^{2}=0
Tangohia te 2x^{2} mai i ngā taha e rua.
56x-2x^{2}=-56
Tangohia te 56 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x^{2}+56x=-56
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+56x}{-2}=-\frac{56}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{56}{-2}x=-\frac{56}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-28x=-\frac{56}{-2}
Whakawehe 56 ki te -2.
x^{2}-28x=28
Whakawehe -56 ki te -2.
x^{2}-28x+\left(-14\right)^{2}=28+\left(-14\right)^{2}
Whakawehea te -28, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -14. Nā, tāpiria te pūrua o te -14 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-28x+196=28+196
Pūrua -14.
x^{2}-28x+196=224
Tāpiri 28 ki te 196.
\left(x-14\right)^{2}=224
Tauwehea x^{2}-28x+196. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{224}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-14=4\sqrt{14} x-14=-4\sqrt{14}
Whakarūnātia.
x=4\sqrt{14}+14 x=14-4\sqrt{14}
Me tāpiri 14 ki ngā taha e rua o te whārite.