Whakaoti mō y
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\left(5+3\right)-35y=21
Whakareatia ngā taha e rua o te whārite ki te 7.
7\times 8-35y=21
Tāpirihia te 5 ki te 3, ka 8.
56-35y=21
Whakareatia te 7 ki te 8, ka 56.
-35y=21-56
Tangohia te 56 mai i ngā taha e rua.
-35y=-35
Tangohia te 56 i te 21, ka -35.
y=\frac{-35}{-35}
Whakawehea ngā taha e rua ki te -35.
y=1
Whakawehea te -35 ki te -35, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}