Whakaoti mō x
x=-\frac{23}{49}\approx -0.469387755
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{7x+5}{3}=\frac{4}{7}
Whakawehea ngā taha e rua ki te 7.
7x+5=\frac{4}{7}\times 3
Me whakarea ngā taha e rua ki te 3.
7x+5=\frac{4\times 3}{7}
Tuhia te \frac{4}{7}\times 3 hei hautanga kotahi.
7x+5=\frac{12}{7}
Whakareatia te 4 ki te 3, ka 12.
7x=\frac{12}{7}-5
Tangohia te 5 mai i ngā taha e rua.
7x=\frac{12}{7}-\frac{35}{7}
Me tahuri te 5 ki te hautau \frac{35}{7}.
7x=\frac{12-35}{7}
Tā te mea he rite te tauraro o \frac{12}{7} me \frac{35}{7}, me tango rāua mā te tango i ō raua taurunga.
7x=-\frac{23}{7}
Tangohia te 35 i te 12, ka -23.
x=\frac{-\frac{23}{7}}{7}
Whakawehea ngā taha e rua ki te 7.
x=\frac{-23}{7\times 7}
Tuhia te \frac{-\frac{23}{7}}{7} hei hautanga kotahi.
x=\frac{-23}{49}
Whakareatia te 7 ki te 7, ka 49.
x=-\frac{23}{49}
Ka taea te hautanga \frac{-23}{49} te tuhi anō ko -\frac{23}{49} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}