Aromātai
\frac{191}{21}-4x
Whakaroha
\frac{191}{21}-4x
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{21+2}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Whakareatia te 7 ki te 3, ka 21.
\frac{23}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Tāpirihia te 21 ki te 2, ka 23.
\frac{23}{3}+\frac{6-\frac{14+4}{7}}{\frac{2\times 5+2}{5}}-4x
Whakareatia te 2 ki te 7, ka 14.
\frac{23}{3}+\frac{6-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Tāpirihia te 14 ki te 4, ka 18.
\frac{23}{3}+\frac{\frac{42}{7}-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Me tahuri te 6 ki te hautau \frac{42}{7}.
\frac{23}{3}+\frac{\frac{42-18}{7}}{\frac{2\times 5+2}{5}}-4x
Tā te mea he rite te tauraro o \frac{42}{7} me \frac{18}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{2\times 5+2}{5}}-4x
Tangohia te 18 i te 42, ka 24.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{10+2}{5}}-4x
Whakareatia te 2 ki te 5, ka 10.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{12}{5}}-4x
Tāpirihia te 10 ki te 2, ka 12.
\frac{23}{3}+\frac{24}{7}\times \frac{5}{12}-4x
Whakawehe \frac{24}{7} ki te \frac{12}{5} mā te whakarea \frac{24}{7} ki te tau huripoki o \frac{12}{5}.
\frac{23}{3}+\frac{24\times 5}{7\times 12}-4x
Me whakarea te \frac{24}{7} ki te \frac{5}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{23}{3}+\frac{120}{84}-4x
Mahia ngā whakarea i roto i te hautanga \frac{24\times 5}{7\times 12}.
\frac{23}{3}+\frac{10}{7}-4x
Whakahekea te hautanga \frac{120}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{161}{21}+\frac{30}{21}-4x
Ko te maha noa iti rawa atu o 3 me 7 ko 21. Me tahuri \frac{23}{3} me \frac{10}{7} ki te hautau me te tautūnga 21.
\frac{161+30}{21}-4x
Tā te mea he rite te tauraro o \frac{161}{21} me \frac{30}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{191}{21}-4x
Tāpirihia te 161 ki te 30, ka 191.
\frac{21+2}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Whakareatia te 7 ki te 3, ka 21.
\frac{23}{3}+\frac{6-\frac{2\times 7+4}{7}}{\frac{2\times 5+2}{5}}-4x
Tāpirihia te 21 ki te 2, ka 23.
\frac{23}{3}+\frac{6-\frac{14+4}{7}}{\frac{2\times 5+2}{5}}-4x
Whakareatia te 2 ki te 7, ka 14.
\frac{23}{3}+\frac{6-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Tāpirihia te 14 ki te 4, ka 18.
\frac{23}{3}+\frac{\frac{42}{7}-\frac{18}{7}}{\frac{2\times 5+2}{5}}-4x
Me tahuri te 6 ki te hautau \frac{42}{7}.
\frac{23}{3}+\frac{\frac{42-18}{7}}{\frac{2\times 5+2}{5}}-4x
Tā te mea he rite te tauraro o \frac{42}{7} me \frac{18}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{2\times 5+2}{5}}-4x
Tangohia te 18 i te 42, ka 24.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{10+2}{5}}-4x
Whakareatia te 2 ki te 5, ka 10.
\frac{23}{3}+\frac{\frac{24}{7}}{\frac{12}{5}}-4x
Tāpirihia te 10 ki te 2, ka 12.
\frac{23}{3}+\frac{24}{7}\times \frac{5}{12}-4x
Whakawehe \frac{24}{7} ki te \frac{12}{5} mā te whakarea \frac{24}{7} ki te tau huripoki o \frac{12}{5}.
\frac{23}{3}+\frac{24\times 5}{7\times 12}-4x
Me whakarea te \frac{24}{7} ki te \frac{5}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{23}{3}+\frac{120}{84}-4x
Mahia ngā whakarea i roto i te hautanga \frac{24\times 5}{7\times 12}.
\frac{23}{3}+\frac{10}{7}-4x
Whakahekea te hautanga \frac{120}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{161}{21}+\frac{30}{21}-4x
Ko te maha noa iti rawa atu o 3 me 7 ko 21. Me tahuri \frac{23}{3} me \frac{10}{7} ki te hautau me te tautūnga 21.
\frac{161+30}{21}-4x
Tā te mea he rite te tauraro o \frac{161}{21} me \frac{30}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{191}{21}-4x
Tāpirihia te 161 ki te 30, ka 191.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}