7 \frac { 1 } { 6 } - \frac { 5 } { 18 } - 1,5 =
Kōmaka
5,\frac{53}{9}
Aromātai
\frac{53}{9},5
Tohaina
Kua tāruatia ki te papatopenga
sort(\frac{42+1}{6}-\frac{5}{18}-1,5)
Whakareatia te 7 ki te 6, ka 42.
sort(\frac{43}{6}-\frac{5}{18}-1,5)
Tāpirihia te 42 ki te 1, ka 43.
sort(\frac{129}{18}-\frac{5}{18}-1,5)
Ko te maha noa iti rawa atu o 6 me 18 ko 18. Me tahuri \frac{43}{6} me \frac{5}{18} ki te hautau me te tautūnga 18.
sort(\frac{129-5}{18}-1,5)
Tā te mea he rite te tauraro o \frac{129}{18} me \frac{5}{18}, me tango rāua mā te tango i ō raua taurunga.
sort(\frac{124}{18}-1,5)
Tangohia te 5 i te 129, ka 124.
sort(\frac{62}{9}-1,5)
Whakahekea te hautanga \frac{124}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
sort(\frac{62}{9}-\frac{9}{9},5)
Me tahuri te 1 ki te hautau \frac{9}{9}.
sort(\frac{62-9}{9},5)
Tā te mea he rite te tauraro o \frac{62}{9} me \frac{9}{9}, me tango rāua mā te tango i ō raua taurunga.
sort(\frac{53}{9},5)
Tangohia te 9 i te 62, ka 53.
\frac{53}{9},5
Tahuritia ngā tau ā-ira i te rārangi \frac{53}{9},5 ki ngā hautanga.
\frac{53}{9}
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga \frac{53}{9} kotahi.
5,\frac{53}{9}
Me kōkuhu te 5 ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}